N-Acetyl- α-d-galactosamine. An Amino Sugar

By Richard D. Gilardi and Judith L. Flippen
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

(Received 29 May 1974; accepted 16 August 1974)

Abstract

C}_{8} \mathrm{H}_{15} \mathrm{NO}_{6}\), monoclinic, $P 2_{1}, a=9.154$ (2), $b=6.321$ (2), $c=9.217$ (2) $\AA, \beta=107.91$ (2) ${ }^{\circ}, Z=2$, $D_{x}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}$. Hydrogen bonding, including an intramolecular hydrogen bond not found in any other galactose derivative, dominates the molecular packing.

Introduction. N-Acetyl-D-galactosamine is a saccharide residue which occurs often in the polysaccharide chains of natural glycoproteins and proteoglycans. Data were collected from a small crystal ($0.10 \times 0.10 \times 0.04 \mathrm{~mm}$) selected from a commercial sample (Sigma Chemical Company). 893 independent reflections were measured on an automatic computer-controlled diffractometer using $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.54178 \AA$, Ni-filtered). The $\theta-2 \theta$ scan mode of data collection was used and 3 standard reflections were monitored after every 50 reflection measurements. No deterioration was noted in the
standards, and data were measured to $\sin \theta / \lambda_{\max }=0.58$.
The structure was solved by application of the symbolic addition procedure for noncentrosymmetric crystals (Karle \& Karle, 1966) and refined using full-matrix least-squares methods (Busing et al., 1971) on the full set of 893 reflections. The origin was fixed by holding constant the y coordinate of the geometrical centroid of the non-hydrogen atoms; this constraint was added to the least-squares refinement program. The hydrogen atoms were located in a difference map and their positions were refined. The thermal factors for the hydrogen atoms were constrained in the least-squares refinement to be equal to those of the atom to which they were bonded. The scattering factors of Stewart, Davidson \& Simpson (1965) were used for the hydrogen atoms, and those of Hanson, Herman, Lea \& Skillman (1964) were used for all other atoms. The function minimized

Table 1. Fractional coordinates and thermal parameters with standard deviations
The thermal parameters are of the form $T=\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right]\right.$. Standard deviations are based solely on the least-squares calculations.

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
C(1)	$0 \cdot 36042$ (54)	$0 \cdot 24112$ (0)	$0 \cdot 89681$ (53)	$2 \cdot 22$ (20)	3.29 (26)	$2 \cdot 45$ (22)	$0 \cdot 54$ (20)	$0 \cdot 61$ (17)	$0 \cdot 12$ (21)
C(2)	$0 \cdot 25237$ (52)	$0 \cdot 30185$ (77)	0.98792 (50)	2.57 (20)	1.55 (21)	$2 \cdot 14$ (19)	-0.05 (19)	0.46 (16)	0.33 (19)
C(3)	$0 \cdot 08613$ (50)	$0 \cdot 29807$ (82)	$0 \cdot 88512$ (53)	$2 \cdot 21$ (19)	$2 \cdot 64$ (26)	3.02 (22)	-0.09 (20)	0.96 (17)	-0.33 (21)
C(4)	$0 \cdot 06893$ (57)	$0 \cdot 44225$ (85)	$0 \cdot 74912$ (61)	$2 \cdot 37$ (21)	$2 \cdot 90$ (25)	$3 \cdot 20$ (24)	$0 \cdot 11$ (19)	$0 \cdot 82$ (18)	$0 \cdot 47$ (21)
C(5)	$0 \cdot 18219$ (51)	$0 \cdot 37615$ (99)	$0 \cdot 66641$ (51)	$2 \cdot 47$ (19)	$3 \cdot 31$ (28)	2.75 (22)	$0 \cdot 37$ (23)	0.67 (17)	-0.03 (24)
C(6)	$0 \cdot 17779$ (63)	$0 \cdot 51466$ (99)	$0 \cdot 53044$ (61)	$3 \cdot 32$ (26)	$4 \cdot 40$ (34)	2.52 (25)	$0 \cdot 19$ (26)	$0 \cdot 84$ (18)	0.41 (27)
C(7)	$0 \cdot 38102$ (51)	$0 \cdot 18218$ (87)	1.24764 (51)	$2 \cdot 29$ (19)	3.75 (28)	$2 \cdot 33$ (21)	$0 \cdot 17$ (21)	$0 \cdot 78$ (17)	$0 \cdot 20$ (22)
C(8)	$0 \cdot 38224$ (71)	$0 \cdot 02154$ (99)	$1 \cdot 36861$ (66)	3.00 (25)	$5 \cdot 44$ (37)	$3 \cdot 42$ (30)	- 0.68 (32)	0.78 (21)	$1 \cdot 52$ (31)
O(1)	$0 \cdot 33077$ (41)	0.03144 (69)	$0 \cdot 84985$ (42)	$3 \cdot 61$ (18)	$3 \cdot 22$ (18)	$4 \cdot 13$ (17)	0.83 (16)	1.74 (14)	-0.32 (16)
N(2)	$0 \cdot 27265$ (43)	$0 \cdot 16144$ (69)	$1 \cdot 11555$ (47)	$2 \cdot 37$ (18)	$2 \cdot 58$ (23)	$2 \cdot 60$ (17)	-0.46(16)	0.38 (15)	$0 \cdot 26$ (17)
O(3)	-0.01713 (43)	$0 \cdot 36684$ (66)	0.96170 (36)	3.43 (14)	$3 \cdot 30$ (20)	$3 \cdot 71$ (19)	0.82 (16)	$2 \cdot 11$ (14)	$1 \cdot 12$ (16)
O(4)	0.08749 (48)	$0 \cdot 65551$ (64)	0.80307 (46)	5.43 (21)	$2 \cdot 46$ (19)	$4 \cdot 49$ (22)	0.49 (17)	$2 \cdot 86$ (16)	$0 \cdot 68$ (17)
O(5)	$0 \cdot 33698$ (31)	$0 \cdot 38142$ (60)	$0 \cdot 76802$ (32)	2.46 (14)	3.55 (18)	$2 \cdot 60$ (14)	$0 \cdot 18$ (15)	0.81 (11)	$0 \cdot 79$ (15)
O(6)	$0 \cdot 21007$ (43)	$0 \cdot 73113$ (66)	$0 \cdot 56907$ (43)	$3 \cdot 33$ (17)	$4 \cdot 39$ (20)	$3 \cdot 54$ (17)	$0 \cdot 01$ (18)	0.58 (14)	0.97 (16)
O(7)	$0 \cdot 47816$ (35)	$0 \cdot 32609$ (58)	$1 \cdot 27526$ (34)	$3 \cdot 05$ (14)	$3 \cdot 80$ (20)	$2 \cdot 85$ (14)	$-1 \cdot 15$ (15)	$0 \cdot 46$ (12)	$0 \cdot 32$ (14)

Table 1 (cont.)

	x	y	z
H(1)	0.477 (5)	0.251 (8)	0.964 (4)
H(2)	$0 \cdot 280$ (5)	$0 \cdot 442$ (8)	1.017 (5)
H(3)	0.055 (5)	$0 \cdot 143$ (8)	0.845 (5)
H(4)	-0.034 (5)	0.434 (8)	$0 \cdot 680$ (5)
H(5)	$0 \cdot 156$ (5)	$0 \cdot 235$ (10)	$0 \cdot 625$ (5)
H(6A)	$0 \cdot 072$ (5)	$0 \cdot 504$ (9)	$0 \cdot 449$ (4)
$\mathrm{H}(6 B)$	$0 \cdot 239$ (5)	$0 \cdot 449$ (9)	0.481 (5)
$\mathrm{H}(8)$	0.475 (5)	0.008 (10)	1.445 (5)
$\mathrm{H}(8 B)$	$0 \cdot 378$ (6)	-0.097 (11)	1.323 (6)
$\mathrm{H}(8 \mathrm{C})$	$0 \cdot 299$ (5)	-0.016 (10)	$1 \cdot 387$ (5)
$\mathrm{H}(\mathrm{O} 1)$	$0 \cdot 408$ (5)	0.003 (9)	0.820 (5)
H(N2)	$0 \cdot 219$ (5)	0.068 (9)	$1 \cdot 112$ (5)
H(03)	-0.019 (7)	$0 \cdot 286$ (9)	1.009 (7)
$\mathrm{H}(\mathrm{O} 4)$	$0 \cdot 127$ (7)	$0 \cdot 703$ (9)	0.753 (6)
H(06)	$0 \cdot 309$ (5)	$0 \cdot 749$ (9)	$0 \cdot 610$ (5)

was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where the weights (w) were calculated according to a procedure outlined by Gilardi (1973). The final R index is $0.066\left(R_{w}=0.037\right)$. At the end of the refinement procedure the standard deviation of an observation of unit weight $\left\{\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \mid\right.\right.$ $(M-N)]^{1 / 2}$ where $M=893$ and $\left.N=180\right\}$ was $1 \cdot 25$. Table 1 lists the final coordinates and thermal factors. Bond distances and angles are listed in Table 2."

[^0]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations

$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 395(4)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(5)$	$111 \cdot 3(4)$
$\mathrm{C}(1)-\mathrm{O}(5)$	$1 \cdot 444(5)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108 \cdot 2(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.530(6)$	$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$109 \cdot 8(3)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.439(6)$	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$110 \cdot 6(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 526(6)$	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$110 \cdot 6(4)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 411(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$110 \cdot 2(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 518(7)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$108 \cdot 2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 522(6)$	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$112 \cdot 2(4)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 429(7)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$109 \cdot 5(4)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1 \cdot 439(5)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	$107 \cdot 9(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 519(8)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$114 \cdot 0(5)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1.422(8)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$109 \cdot 6(4)$
$\mathrm{C}(7)-\mathrm{O}(7)$	$1 \cdot 243(6)$	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$107 \cdot 1(4)$
$\mathrm{C}(7)-\mathrm{N}(2)$	$1 \cdot 319(6)$	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	$110 \cdot 7(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 506(8)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$113 \cdot 9(5)$
		$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	$113 \cdot 4(5)$
		$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{N}(2)$	$123 \cdot 3(5)$
		$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$116 \cdot 7(5)$
		$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(2)$	$124.4(4)$
		$\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)$	$112 \cdot 9(4)$

Average distances and angles involving hydrogen atoms. Standard deviations quoted are simple unweighted averages of the individual standard deviations for distances or angles

	Distance	Range (σ)		Angle Range (σ)	
C-H	$0.96(5)$	2	H-C-C	$109 \cdot 6(2 \cdot 9)$	4
$\mathrm{O}-\mathrm{H}$	$0.78(5)$	2	H-C-H	$101 \cdot 7(4.6)$	4
$\mathrm{~N}-\mathrm{H}$	$0.76(5)$		H-C-O	$109 \cdot 3(2 \cdot 9)$	3
			H-O-C	$104 \cdot 2(4 \cdot 4)$	2
			H-N-C	$117 \cdot 8(3.6)$	1
			H-C-N	$113 \cdot 1(2 \cdot 9)$	

Discussion. The configuration of the molecule is illustrated in Fig. 1. The pyranose ring has a normal ${ }^{4} C_{1}$ conformation. Within the ring, those torsion angles (Table 3) which include the ring oxygen as a central atom are slightly larger than the others. This difference can also be seen in the reported conformational parameters of α-glucuronamide (Flippen \& Gilardi, 1974). The average $\mathrm{C}-\mathrm{OH}$ bond length [excluding the anomeric $\mathrm{C}(1)-\mathrm{O}(1)$ bond] is $1 \cdot 421$ (7) \AA and the mean $\mathrm{C}-\mathrm{C}$ bond length [excluding $C(7)-C(8)$] is 1.523 (7) \AA. These values are in good agreement with distances of $1.425 \AA$ for $\mathrm{C}-\mathrm{OH}$ bonds and $1.524 \AA$ for $\mathrm{C}-\mathrm{C}$ bonds quoted by Strahs (1970) in his review of carbohydrate structures. He also gives a value of $1.401 \AA$ as the mean distance for an axial anomeric hydroxyl bond. The anomeric $\mathrm{C}-\mathrm{OH}$ bond length in this molecule is 1.395 (4) \AA. The $C(7)-C(8)$ distance of $1 \cdot 506(8) \AA$ is reasonable for a carbon-carbon single bond next to a $\mathrm{C}=\mathrm{O}$ bond. The carbonyl bond, $\mathrm{C}(7)-\mathrm{O}(7)$, at $1 \cdot 243$ (6) \AA is
somewhat long, but may be accounted for by the participation of $O(7)$ as an acceptor in two strong hydrogen bonds. Similar distances were noted in the α-glucuronamide where the $\mathrm{C}-\mathrm{C}$ distance was $1.508 \AA$ and the $\mathrm{C}=\mathrm{O}$ distance was $1.258 \AA$.

Table 3. Torsion angles $\left({ }^{\circ}\right)$

$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$57 \cdot 5(4)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$61 \cdot 5(4)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$53 \cdot 7(5)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-57 \cdot 3(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$59.2(6)$
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	$-63 \cdot 6(6)$
Pyranose ring	
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$56 \cdot 6(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-55 \cdot 8(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$55 \cdot 8(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$-57 \cdot 5(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)$	$60 \cdot 2(5)$
$\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$-59 \cdot 3(4)$
$\mathrm{N}-\mathrm{Acetyl} \log$	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(7)$	$82 \cdot 8(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(7)$	$-154 \cdot 9(5)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	$-0 \cdot 4(8)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$179 \cdot 0(5)$

N-Acetylgalactosamine contains five hydrogen atoms connected to nitrogen or oxygen atoms and they all participate in hydrogen bonding (see Table 4). However, not all of the hydroxyl oxygens serve as acceptors. The carbonyl oxygen, $\mathrm{O}(7)$, accepts two hy-

Fig. 1. A computer-drawn perspective illustration based on the final refined coordinates of all atoms. The ellipsoids drawn for the non-hydrogen atoms represent surfaces enclosing 50% of the Gaussian thermal distributions obtained in the refinement of the model (Johnson, 1965).

Table 4. Hydrogen bonds
Donor
$A-B$
$\mathrm{O}(1)-\mathrm{H}(\mathrm{O} 1)$
$\mathrm{N}(2)-\mathrm{H}(\mathrm{N} 2)$
$\mathrm{O}(3)-\mathrm{H}(\mathrm{O} 3)$
$\mathrm{O}(4)-\mathrm{H}(\mathrm{O} 4)^{*}$
$\mathrm{O}(6)-\mathrm{H}(\mathrm{O} 6)$

Acceptor C	$\begin{gathered} \text { Distance } \\ B-C \end{gathered}$	$\begin{aligned} & \text { Distance } \\ & \qquad A-C \end{aligned}$	$\begin{aligned} & \text { Angle } \\ & A-B-C \end{aligned}$
$\mathrm{O}(7)\left(1-x, y-\frac{1}{2}, 2-z\right)$	1.91 (5) \AA	2.704 (4) \AA	153 (5) ${ }^{\circ}$
$\mathrm{O}(3)\left(\bar{x}, y-\frac{1}{2}, 2-z\right)$	$2 \cdot 17$ (5)	2.902 (6)	160 (5)
O (4) ($\left.\bar{x}, y-\frac{1}{2}, 2-z\right)$	$2 \cdot 18$ (6)	2.786 (5)	150 (7)
$\mathrm{O}(6)(x, y, z)$	2.07 (5)	2.762 (5)	158 (6)
$\mathrm{O}(7)\left(1-x, y+\frac{1}{2}, 2-z\right)$	1.97 (5)	2.836 (5)	170 (5)

Fig. 2. A stereo view illustrating some features of the packing. Each of the five hydrogen bonds of the structure is shown once, as an arrow pointing from donor to acceptor. The b axis is directed out of the paper towards the viewer. Some of the oxygen and nitrogen atoms are numbered, to indicate the orientation of the individual molecules.
drogen bonds while the hydroxyl oxygen, $O(1)$, accepts none. There is an intramolecular hydrogen bond in this structure which has not been reported in other galactopyranose structures. The $\mathrm{C}(6)-\mathrm{O}(6)$ bond is rotated about the $C(5)-C(6)$ bond to a position in which there are two unfavorable gauche interactions with adjacent ring bonds; however, this location allows the formation of a hydrogen bond between $\mathrm{O}(6)$ and the neighboring axial hydroxyl oxygen, $\mathrm{O}(4)$. The intermolecular hydrogen bonds connect the molecules in layers which extend parallel to the $a b$ plane; no hydrogen bonds link these layers. A portion of this network is shown in Fig. 2.
This investigation was supported in part by the Office of Naval Research Contract N00014.

References

Busing, W. R., Martin, K. O., Levy, H. A., Ellison, R. D., Hamilton, W. C., Ibers, J. A., Johnson, C. K. \& Thiessen, W. E. (1971). ORXFLS3. Oak Ridge National Laboratory, Oak Ridge, Tennessee
Flippen, J. L. \& Gilardi, R. D. (1974). Acta Cryst. B30, 537-539.
Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794. Oak Ridge, Tennessee. Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859. Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3183.

Strahs, G. (1970). Adv. Carbohydr. Chem. 25, 53-107.

Lanthanum Tetraboride

By K. Kato, I. Kawada, C. Oshima and S. Kawai
National Institute for Researches in Inorganic Materials, Kurakake, Sakura-mura, Niihari-gun, Ibaraki-ken 300-31, Japan

(Received 29 July 1974; accepted 16 August 1974)

Abstract

LaB}_{4}\), tetragonal, $P 4 / m b m, a=7 \cdot 324$ (1), $c=$ $4 \cdot 181$ (1) $\AA, Z=4, D_{x}=5.396 \mathrm{~g} \mathrm{~cm}^{-3}$. The crystals were prepared from a molten lanthanum metal flux. The structure, homotypic with that of $\mathrm{CeB}_{4}, \mathrm{ThB}_{4}$ and UB_{4}, was refined by the least-squares method based on 520 X-ray diffraction intensities. The B-B distances range from 1.75 to $1.85 \AA$, the La-B distances from $2 \cdot 818$ to $3 \cdot 155 \AA$.

Introduction. The crystals were prepared according to the method described by Deacon \& Hiscocks (1971). The unit-cell dimensions were obtained by the leastsquares method based on the 2θ angles measured on a four-circle diffractometer (Rigaku) using monochromated Mo $K \alpha$ radiation ($\lambda=0.70926 \AA$); they agree with the values reported by Fisk, Cooper,

Schmidt \& Castellano (1972). The intensities were collected on the same diffractometer. In the range $2 \theta \leq 90^{\circ}, 2147$ reflexions were measured of which 1863 were greater than zero. The specimen used was prismatic, $0.13 \times 0.10 \times 0.24 \mathrm{~mm}$ in size and bounded predominantly by $\{110\}$. The observed intensities were corrected for absorption ($\mu=190 \mathrm{~cm}^{-1}$ for Mo K α radiation) and then reduced to a set of 520 independent reflexions by averaging the equivalent ones.

Evidently LaB_{4} is isostructural with $\mathrm{CeB}_{4}, \mathrm{ThB}_{4}$ and UB_{4}; the systematic absences $h 0 l$ with $h \neq 2 n$ agree with those expected for the space group $P 4 / \mathrm{mbm}$ in which these borides crystallize. The coordinates of the lanthanum atom were therefore taken from their structural data and refined by the full-matrix leastsquares method with the computer program ORFLS

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30630 (18 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 NZ, England.

